«ПЕРВЫЙ СРЕДИ РАВНЫХ...»
Нормативные документы
Противодействие коррупции
Поступающим
Студентам
Выпускникам
Проект 5-100
Аккредитация специалистов
Молекулярный микрочип уже почти работает 01.02.2007

Молекулярный микрочип уже почти работает

В Калифорнии создан прототип микросхемы памяти с плотностью записи около 100 гигабит на квадратный сантиметр — примерно в 40 раз выше, чем у производимых ныне аналогов.

Носителями информации в ней служат молекулы органического соединения [2]-ротаксана, способные переключаться между двумя стабильными состояниями. Микросхема более чем на десятилетие опережает предсказания закона Мура, согласно которому такая степень миниатюризации запоминающих устройств может быть достигнута только к 2020 году.

Кремниевые интегральные микросхемы уже достаточно близко подошли к пределу своих возможностей как по минимальному размеру элементов (например, ячеек памяти), так и по количеству элементов в одном кристалле. Поэтому сейчас ведутся активные поиски материалов, которые могли бы послужить основой для значительно более компактной молекулярной электроники. В идеале, каждую молекулу такого вещества можно было бы использовать как отдельный переключатель, хранящий один бит информации.

Одним из классов молекул, способных на это, стали [2]-ротаксаны, созданные исследовательской группой под руководством Джеймса Хита (James Heath) из Калифорнийского технологического института и Фрейзера Стоддарта (Fraser Stoddart), директора Института наносистем Калифорнийского университета в Лос-Анджелесе. Исследования уже вышли на стадию разработки технологий: в последнем номере журнала Nature опубликована статья о работающем чипе молекулярной памяти объемом 160 000 бит.

Ротаксаны (rotaxane) состоят из двух компонентов, химическая связь между которыми отсутствует. Первый компонент ротаксана — длинная гантелеобразная молекула, строение которой линейно, второй компонент — макроциклическое соединение, охватывающее тонкий стержневой фрагмент молекулярной гантели. При этом объемные заместители на концах гантели играют роль своеобразных заглушек и не дают макроциклу соскользнуть со стержня, оставляя для него возможность движения только вдоль оси молекулярной гантели. А то, что один из концов гантели гидрофильный, а второй гидрофобный, позволяет получать из ротоксанов одномолекулярные пленки, в которых все молекулы одинаково ориентированы.

[2]-ротаксан (two-state rotaxane), используемый калифорнийскими учеными, имеет в своей структуре положительно заряженное кольцо, которое может фиксироваться межмолекулярными взаимодействиями в двух различных позициях. Одна из этих позиций соответствует «нулю», а другая — «единице».

В обычном (закрытом, непроводящем) состоянии, соответствующем «нулю», кольцо связывается с тетратиафульваленовой группой. Окисление тетратиафульвалена приводит к появлению на фрагменте TTF положительного заряда (из-за отбора электронов), и положительно заряженное макроциклическое соединение отталкивается ко второй позиции, в которой проводимость ротаксана максимальна. Это состояние электронного прибора соответствует логической «единице».

Группа Хита и Стоддарта разместила монослой молекул [2]-ротаксана между перекрещивающимися 400 кремниевыми и 400 титановыми нанопроводами. Шаг решетки составляет около 30 нанометров (15 нм ширина провода и столько же — расстояние между соседними проводами). В каждой точке пересечения между кремнием и титаном локализовано около 100 молекул, способных реагировать на электрические сигналы. Подавая напряжение на один горизонтальный и один вертикальный провод, можно прочитать или записать один бит информации. При этом каждый из 400 × 400 = 160 000 битов может функционировать независимо от других.

Таким образом, создан работающий прототип молекулярного чипа, способного хранить около 20 килобайт информации на площади в 100 раз меньше, чем срез человеческого волоса.

Правда, это всё-таки только прототип. Подвести к нанопроводам внешние контакты оказалось сложнее, чем создать сами провода (для чего была использована оригинальная технология гравирования), поэтому пока реально функционирует только небольшой участок микросхемы — 10 × 18 бит. Из-за ограничений нанотехнологии сработала всего половина протестированных битов, и только с половины из них удалось считать записанную информацию. Наконец, молекулы [2]-ротаксана пока выдерживают лишь несколько циклов записи, после чего «выходят из строя».

Калифорнийские ученые уверены, что все эти трудности будут преодолены, хотя и не берутся назвать конкретные сроки. В любом случае, уже можно утверждать, что поставлен новый рекорд плотности записи данных и продемонстрирована возможность создания молекулярных микросхем, пригодных для практического применения. Недаром одному из авторов исследования, Фрейзеру Стоддарту, за заслуги в области химии и нанотехнологии месяц назад английская королева пожаловала рыцарский титул (knight bachelor). Сэр Стоддарт пополнил список ученых-рыцарей наряду с нобелевскими лауреатами Александром Флемингом (Alexander Fleming), Александром Тоддом (Alexander Todd) и Харольдом Крото (Harold Kroto).

Источники:
1) Chemical computing creates world's densest data storage medium, RSC, 24.01.2007.
2) Philip Ball. A switch in Time (Pdf, 400 Кб) // Nature. 2007. V. 445, P. 362–363.
3) Jonathan E. Green, Jang Wook Choi, Akram Boukai, Yuri Bunimovich, Ezekiel Johnston-Halperin, Erica DeIonno, Yi Luo, Bonnie A. Sheriff, Ke Xu, Young Shik Shin, Hsian-Rong Tseng, J. Fraser Stoddart, James R. Heath. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter (полный текст —Pdf, 900 Кб) // Nature. 2007. V. 445, P. 414–417.


Исходная статья: «Элементы»
Авторы:  Аркадий Курамшин